В непрозрачном мешке лежат 679 белых и 679 чёрных шаров. Какое наименьшее число шаров нужно вынуть из мешка не глядя, чтобы среди них было 2 шара: а) белых; б) чёрных; в) разных цветов; г) одного цвета?
Решение: а) первые 679 вынутых шаров могут быть черными, а значит в мешке останутся только белые шары. Поэтому за два последующих вынимания мы выполним условие задачи, следовательно: 679 + 2 = 681 шар нужно вынуть, чтобы можно было утверждать что среди них обязательно есть 2 белых шара; б) первые 679 вынутых шаров могут быть белыми, а значит в мешке останутся только черные шары. Поэтому за два последующих вынимания мы выполним условие задачи, следовательно: 679 + 2 = 681 шар нужно вынуть, чтобы можно было утверждать что среди них обязательно есть 2 белых шара; в) первые 679 вынутых шаров могут быть одноцветными, а значит в мешке останутся только шары другого цвета. Поэтому за следующее вынимание мы выполним условие задачи, следовательно: 679 + 1 = 680 шаров нужно вынуть, чтобы можно было утверждать что среди них обязательно есть 2 разноцветных шара; д) первые 2 вынутых шара могут быть разноцветными, поэтому за следующее вынимание мы выполним условие задачи, следовательно: 2 + 1 = 3 шара нужно вынуть, чтобы можно было утверждать что среди них обязательно есть 2 шара одинакового цвета. Ответ: а) 681 шар; б) 681 шар; в) 680 шаров; г) 3 шара.